A Case Study of Transfer of
Lesion Knowledge




Motivation

e Cancer is one of the deadliest
diseases, with plenty of people
commonly misdiagnosed

e CAD is important as a second
opinion

e Deep models are very good with
image data




Motivation

e Deep models require a lot of data
e Access to large-scale medical data is a

M Deep

problem: e Learning

o Privacy concerns around sharing WANTS 3
medical data THE

o Getting annotations is costly DATA

o Some organs have lesser data than
others, makes making CAD
systems for organs with sparse
data tougher



Solution- Transfer
learning

e Transfer learning- method for dealing with
lack of data. Transfer weights from a model
with more data to to that with lesser data

e Standard way- Imagenet weights

e (Can we do better????

He, K., Girshick, R., Doll ar, P.: Rethinking imagenet pre-training (2018)

| will give
you my
weights,
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Case for lesion-specific models

Benign Tumours

e Sharp margins

e No enhancing
rm

e Homogenous
gradient

Benign Tumor
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Cells are not cancerous and
won’t spread.
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Malignant Tumor
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Cells are cancerous and
can spread to other tissues
and organs.

Image from https://www.verywellhealth.com/what-does-malignant-and-benign-mean-514240

Malignant Tumours

e Irregular
boundaries

e Thickening at the
periphery

e Non-smooth
gradient




Methodology
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Methodology
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Network Architecture

DenseNet-201

* Image from https://pytorch.org/hub/pytorch_vision_densenet/

Adam Optimiser

Binary Cross Entropy
Loss

Learning Rate : 1e-4

Batch Size : 64



Datasets
1

LIDC-IDRI

e Diagnostic and lung cancer screening
thoracic CT scans with marked-up
annotated lesions

e Malignancy values from 1 to 3 were
considered as benign, and the rest
were considered malignant.

Clark, K. et al. : The cancer imaging archive (tcia): Maintaining and operating a
public information repository. https://doi.org/10.1007/s10278-013-9622-7

Brain Tumour Dataset

e \Weighted contrast-enhanced images
from patients with meningioma, glioma
and pituitary tumours

e Meningioma and Pituitary tumours were
taken as benign, and glioma tumours
were taken as malignant.

Cheng, J.: brain tumor dataset (April 2017), https://figshare.com/articles/
dataset/brain_tumor_dataset/1512427



Results

1. Given enough source training data, target models obtained using lesion-augmented
transfer perform better than those obtained using lesion agnostic transfer
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Inclusion of 5000 (or fewer)
lesion-specific source images gives
better performance than over 15M
lesion-agnostic source images



Results

2. As the lesion augmented target data size (dt) decreases, the benefit of lesion-augmented transfer over
lesion-agnostic transfer increases
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Results

3. As the source data size (ds) decreases, the lesion-augmented models get less effective
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Re S u I tS B Lesion Agnostic Model

B Lesion Augmented Model

4. Lower Variance of Lesion-Augmented Models

Recall range across 5-fold CV Precision Range across 5-fold CV

Brain to Lung Brain to Lung

Lung to Brain Lung to Brain




Results

5. Faster Convergence of Lesion-Augmented models:
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Fig. 5. Loss vs epochs for brain-to-lung
transfer, using a “VLow” value of |d|



Future Scope

Soﬂrcé Target

Why??



Future Scope

LesionNet

Yan, K., Wang, X, Lu, L., Summers, R.: Deeplesion: Automated mining of large scale lesion annotations and universal lesion
detection with deep learning. Journal of Medical Imaging 5, 1 (07 2018). https://doi.org/10.1117/1.JMI.5.3.036501
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